Exact theory of the finite-temperature spectral function of Fermi polarons with multiple particle-hole excitations: Diagrammatic theory versus Chevy ansatz

arxiv(2024)

引用 0|浏览3
暂无评分
摘要
By using both diagrammatic theory and Chevy ansatz approach, we derive an exact set of equations, which determines the spectral function of Fermi polarons with multiple particle-hole excitations at nonzero temperature. In the diagrammatic theory, we find out the complete series of Feynman diagrams for the multi-particle vertex functions, when the unregularized contact interaction strength becomes infinitesimal, a typical situation occurring in two- or three- dimensional free space. The latter Chevy ansatz approach is more widely applicable, allowing a nonzero interaction strength. We clarify the equivalence of the two approaches for an infinitesimal interaction strength and show that the variational coefficients in the Chevy ansatz are precisely the on-shell multi-particle vertex functions divided by an excitation energy. Truncated to a particular order of particle-hole excitations, our exact set of equations can be used to numerically calculate the finite-temperature polaron spectral function, once the numerical singularities in the equations are appropriately treated. As a concrete example, we calculate the finite-temperature spectral function of Fermi polarons in one-dimensional lattices, taking into account all the two-particle-hole excitations. We show that the inclusion of two-particle-hole excitations quantitatively improve the predictions on the polaron spectral function. Our results provide a useful way to solve the challenge problem of accurately predicting the finite-temperature spectral function of Fermi polarons in three-dimensional free space. In addition, our clarification of the complete set of Feynman diagrams for the multi-particle polaron vertex functions may inspire the development of more accurate diagrammatic theories of population-imbalanced strongly interacting Fermi gases, beyond the conventional many-body T-matrix approximation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要