Thermodynamics of the Eu(iii)-Mg-SO4-H2O and Eu(iii)-Na-SO4-H2O systems. Part I: solubility experiments and the full dissociation Pitzer model

P. F. dos Santos,A. Lassin, X. Gaona, K. Garbev, M. Altmaier, B. Made

DALTON TRANSACTIONS(2024)

引用 0|浏览2
暂无评分
摘要
The solubility of Eu(III) was investigated under undersaturated conditions in acidic, dilute to concentrated MgSO4 and Na2SO4 solutions at T = (22 +/- 2) degrees C. After attaining equilibrium conditions, solid phases were characterized by a multi-method approach, including X-ray diffraction (XRD), Raman and infrared (IR) spectroscopy, quantitative chemical analysis (ICP-OES) and thermogravimetric analysis (TG-DTA). A total of 45 solubility samples were investigated for the systems Eu-2(SO4)(3)-MgSO4-H2O (19 samples) and Eu-2(SO4)(3)-Na2SO4-H2O (26 samples). Eu-2(SO4)(3)8H(2)O(cr) was found to control the solubility of Eu(III) in all investigated MgSO4 solutions, as well as in dilute Na2SO4 systems. The transformation of Eu-2(SO4)(3)8H(2)O(cr) into the double salt Na2Eu2(SO4)(4)2H(2)O(cr) was observed at mNa(2)SO(4) > 0.01 mol kg(-1). The latter phase is characterized by significantly lower solubility. Based on these experimental solubility measurements, thermodynamic and activity models were proposed based on the Pitzer equations considering the full dissociation of the Eu(III) species in MgSO4 and Na2SO4 aqueous solutions, i.e. deliberately excluding Eu(III)-sulfate complex formation. A combination of the geochemical calculation code PhreeSCALE and the parameter estimation code PEST was used to determine the values of solubility products and binary and ternary specific interaction parameters (beta(0)ij, beta(1)ij, C phi ij, theta(ik), Psi(ijk)).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要