谷歌浏览器插件
订阅小程序
在清言上使用

Impacts of electric field coupled membrane bioreactor on phenol wastewater with high salinity: Performance, membrane fouling and eco-friendly strategy

Journal of Water Process Engineering(2024)

引用 0|浏览7
暂无评分
摘要
Electric field coupled membrane bioreactor (EMBR) enhanced the treatment performance of phenol wastewater with high salinity, improved sludge settleability, and alleviated membrane fouling. The sludge volume index (SVI) and fouling rate were positively correlated with the extracellular polymeric substance (EPS) content, indicating that the electric field improved sludge settleability by improving the properties of EPS, successfully reducing the fouling rate by 42.86 %. The phenol-degrading and salt-tolerant genera were enriched, and the EPS secretion genera were reduced in EMBR. Moreover, EMBR effectively resisted salt stress by increasing the relative abundance of betaine synthesis (betA) and transport genes (proV and proW), glutamate synthesis genes (gltB and gltD), salt stress response gene (rpoS), and F-type H+/Na+-transport ATPase genes (atpA and atpD), as well as reducing the relative abundance of genes related to cell membrane permeability. Meanwhile, EMBR decreased the production of intracellular reactive oxygen species (ROS), activated the antioxidant system and inhibited the ROS-mediated Save our Soul (SOS) response, which further improved salt tolerance of microorganisms. Furthermore, the inhibition of the SOS response reduced the dissemination of antibiotic resistance genes (ARGs). The co-occurrence patterns of ARGs and genera indicated that EMBR could also suppress the dissemination of ARGs by reducing the relative abundance of ARGs hosts.
更多
查看译文
关键词
Electric field coupled MBR,Phenol wastewater with high salinity,Membrane fouling,Salt tolerance mechanism,Antibiotic resistance genes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要