Dielectrophoretic-inertial microfluidics for Symbiodinium separation and enrichment

Teng Zhou, Jixin He, Zhihao Wu, Qin Bian,Xiaohan He, Shizheng Zhou,Juncheng Zhao, Tao Wu,Liuyong Shi,Hong Yan

PHYSICS OF FLUIDS(2024)

引用 0|浏览10
暂无评分
摘要
In the marine environment, the symbiotic relationship between Symbiodinium and corals plays a pivotal role in coral growth and development. Against the backdrop of widespread coral bleaching due to the global climate change, the facile and efficient separation and enrichment of different strains of Symbiodinium hold significant importance for studying coral bleaching. This paper aims to report a platform that integrates dielectrophoretic and inertial forces for the separation and enrichment of Symbiodinium, comprising two modular components: a separation module and an enrichment module. Within the separation module, distinct strains of Symbiodinium undergo preliminary stratification in a contraction-expansion microchannel under the influence of inertial forces. Dielectrophoretic forces generated by the indium tin oxide electrodes divert them toward different outlets, achieving separation. In the enrichment module, the Symbiodinium collected from outlets is rapidly focused through a contraction-expansion microchannel and high-purity samples are concentrated through a single outlet. Evaluating separation efficiency is based on the purity of collected Symbiodinium at the outlet under three different flow rates: 13, 16, and 19 mu l/min, while the concentration of enriched Symbiodinium at 100, 200, 300, and 400 mu l/min flow rates evaluates the effectiveness of the enrichment process. The experimental results demonstrate a separation purity of approximately 90% and an enrichment factor of around 5.5. The platform holds promise for further applications in the selection and targeted enrichment of high-quality coral symbiotic algae, providing essential research foundations for the conservation of coral ecosystems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要