Parallelization in time by diagonalization

arxiv(2023)

引用 0|浏览1
暂无评分
摘要
This is a review of preconditioning techniques based on fast-diagonalization methods for space-time isogeometric discretization of the heat equation. Three formulation are considered: the Galerkin approach, a discrete least-square and a continuous least square. For each formulation the heat differential operator is written as a sum of terms that are kronecker products of uni-variate operators. These are used to speed-up the application of the operator in iterative solvers and to construct a suitable preconditioner. Contrary to the fast-diagonalization technique for the Laplace equation where all uni-variate operators acting on the same direction can be simultaneously diagonalized in the case of the heat equation this is not possible. Luckily this can be done up to an additional term that has low rank allowing for the utilization of arrow-head like factorization or inversion by Sherman-Morrison formula. The proposed preconditioners work extremely well on the parametric domain and, when the domain is parametrized or when the equation coefficients are not constant, they can be adapted and retain good performance characteristics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要