Chrome Extension
WeChat Mini Program
Use on ChatGLM

Foldable paper-based photoelectrochemical biosensor based on etching reaction of CoOOH nanosheets-coated laser-induced PbS/CdS/graphene for sensitive detection of ampicillin

TALANTA(2024)

Cited 0|Views6
No score
Abstract
Timely and rapid detection of antibiotic residues in the environment is conducive to safeguarding human health and promoting an ecological virtuous cycle. A foldable paper-based photoelectrochemical (PEC) sensor was successfully developed for the detection of ampicillin (AMP) based on glutathione/zirconium dioxide hollow nanorods/aptamer (GSH@ZrO 2 HS@apt) modified cellulose paper as a reactive zone with laser direct-writing lead sulfide/cadmium sulfide/graphene (PbS/CdS/LIG) as photoelectrode and cobalt hydroxide (CoOOH) as a photoresist material. Initially, AMP was introduced into the paper-based reaction zone as a biogate aptamer, which specifically recognized the target and then left the ZrO 2 HS surface, releasing glutathione (GSH) encapsulated inside. Subsequently, the introduction of GSH into the reaction region and etching of CoOOH nanosheets to expose the PbS/CdS/LIG photosensitive material increased photocurrent. Under optimal conditions, the paperbased PEC biosensor showed a linear response to AMP in the range of 5.0 - 2 x 10 4 pM with a detection limit of 1.36 pM (S/N = 3). In addition, the constructed PEC sensing platform has excellent selectivity, high stability and favorable reproducibility, and can be used to assess AMP residue levels in various real water samples (milk, tap water, river water), indicating its promising application in environmental antibiotic detection.
More
Translated text
Key words
Laser direct writing,Paper-based photoelectrochemical sensors,Cobalt oxyhydroxide nanosheets,Etching reaction
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined