Data from Single-Cell Transcriptomics Analysis Identifies Nuclear Protein 1 as a Regulator of Docetaxel Resistance in Prostate Cancer Cells

crossref(2023)

引用 0|浏览2
暂无评分
摘要
Abstract

The majority of patients with prostate cancer treated with docetaxel develop resistance to it. To better understand the mechanism behind the acquisition of resistance, we conducted single-cell RNA-sequencing (scRNA-seq) of docetaxel-sensitive and -resistant variants of DU145 and PC3 prostate cancer cell lines. Overall, sensitive and resistant cells clustered separately. Differential gene expression analysis between resistant and sensitive cells revealed 182 differentially expressed genes common to both prostate cancer cell lines. A subset of these genes gave a gene expression profile in the resistant transcriptome-like–sensitive cells similar to the resistant cells. Exploration for functional gene pathways identified 218 common pathways between the two cell lines. Protein ubiquitination was the most differentially regulated pathway and was enriched in the resistant cells. Transcriptional regulator analysis identified 321 potential regulators across both cell lines. One of the top regulators identified was nuclear protein 1 (NUPR1). In contrast to the single-cell analysis, bulk analysis of the cells did not reveal NUPR1 as a promising candidate. Knockdown and overexpression of NUPR1 in the prostate cancer cells demonstrated that NUPR1 confers docetaxel resistance in both cell lines. Collectively, these data demonstrate the utility of scRNA-seq to identify regulators of drug resistance. Furthermore, NUPR1 was identified as a mediator of prostate cancer drug resistance, which provides the rationale to explore NUPR1 and its target genes for reversal of docetaxel resistance.

Implications:

Using single-cell sequencing of prostate cancer, we show that NUPR1 plays a role in docetaxel resistance.

更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要