谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Data from Genetic Manipulation of Homologous Recombination <i>In Vivo</i> Attenuates Intestinal Tumorigenesis

crossref(2023)

引用 0|浏览0
暂无评分
摘要
Abstract

Although disruption of DNA repair capacity is unquestionably associated with cancer susceptibility in humans and model organisms, it remains unclear if the inherent tumor phenotypes of DNA repair deficiency syndromes can be regulated by manipulating DNA repair pathways. Loss-of-function mutations in BLM, a member of the RecQ helicase family, cause Bloom's syndrome (BS), a rare, recessive genetic disorder that predisposes to many types of cancer. BLM functions in many aspects of DNA homeostasis, including the suppression of homologous recombination (HR) in somatic cells. We investigated whether BLM overexpression, in contrast with loss-of-function mutations, attenuated the intestinal tumor phenotypes of ApcMin/+ and ApcMin/+;Msh2−/− mice, animal models of familial adenomatous polyposis coli (FAP). We constructed a transgenic mouse line expressing human BLM (BLM-Tg) and crossed it onto both backgrounds. BLM-Tg decreased adenoma incidence in a dose-dependent manner in our ApcMin/+ model of FAP, although levels of GIN were unaffected and concomitantly increased animal survival over 50%. It did not reduce intestinal tumorigenesis in ApcMin/+;Msh2−/− mice. We used the pink-eyed unstable (pun) mouse model to demonstrate that increasing BLM dosage in vivo lowered endogenous levels of HR by 2-fold. Our data suggest that attenuation of the Min phenotype is achieved through a direct effect of BLM-Tg on the HR repair pathway. These findings demonstrate that HR can be manipulated in vivo to modulate tumor formation at the organismal level. Our data suggest that lowering HR frequencies may have positive therapeutic outcomes in the context of specific hereditary cancer predisposition syndromes, exemplified by FAP. Cancer Prev Res; 8(7); 650–6. ©2015 AACR.

更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要