Neutrophil-Based Bionic Delivery System Breaks Through the Capillary Barrier of Liver Sinusoidal Endothelial Cells and Inhibits the Activation of Hepatic Stellate Cells

MOLECULAR PHARMACEUTICS(2024)

引用 0|浏览8
暂无评分
摘要
The capillarization of hepatic sinusoids resulting from the activation of hepatic stellate cells poses a significant challenge, impeding the effective delivery of therapeutic agents to the Disse space for liver fibrosis treatment. Therefore, overcoming these barriers and achieving efficient drug delivery to activated hepatic stellate cells (aHSCs) are pressing challenge. In this study, we developed a synergistic sequential drug delivery approach utilizing neutrophil membrane hybrid liposome@atorvastatin/amlisentan (NCM@AtAm) and vitamin A-neutrophil membrane hybrid liposome @albumin (VNCM@Bai) nanoparticles (NPs) to breach the capillary barrier for targeted HSC cell delivery. Initially, NCM@AtAm NPs were successfully directed to the site of hepatic fibrosis through neutrophil-mediated inflammatory targeting, resulting in the normalization of liver sinusoidal endothelial cells (LSECs) and restoration of fenestrations under the combined influence of At and Am. Elevated tissue levels of the p-Akt protein and endothelial nitric oxide synthase (eNOS) indicated the normalization of LSECs following treatment with At and Am. Subsequently, VNCM@Bai NPs traversed the restored LSEC fenestrations to access the Disse space, facilitating the delivery of Bai into aHSCs under vitamin A guidance. Lastly, both in vitro and in vivo results demonstrated the efficacy of Bai in inhibiting HSC cell activation by modulating the PPAR gamma/TGF-beta 1 and STAT1/Smad7 signaling pathways, thereby effectively treating liver fibrosis. Overall, our designed synergistic sequential delivery system effectively overcomes the barrier imposed by LSECs, offering a promising therapeutic strategy for liver fibrosis treatment in clinical settings.
更多
查看译文
关键词
aHSC,liver fibrosis,LSEC,PPAR gamma/TGF-beta 1,STAT1/Smad7 signaling pathways
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要