Electrocatalytic Hydrogenation of Furfural with Improved Activity and Selectivity at the Surface of Structured Copper Electrodes

Clement Spadetto, Cyril Hachemi, Maxime Nouaille-Degorce, Loic Pendu, Lou Bossert,Robert Temperton,Andrey Shavorskiy,Luis Cardenas,Mathieu S. Prevot

ACS CATALYSIS(2024)

Cited 0|Views7
No score
Abstract
Furfural is a pivotal renewable platform molecule obtained from the chemical breakdown of hemicellulose. While it has traditionally been valorized to value-added chemicals through catalytic hydrogenation in biorefineries, its direct electrocatalytic hydrogenation presents attractive advantages. This article describes the significant improvements brought by the structuring of copper cathodes applied to this process in terms of activity and selectivity. We show that structured electrodes are capable of converting furfural to furfuryl alcohol with 100% selectivity at potentials as high as -0.2 V vs the reversible hydrogen electrode (RHE) in neutral conditions (pH 7.0). Moreover, the same electrode can selectively generate either furfuryl alcohol or 2-methylfuran in acidic conditions (pH 1.0), depending on the applied potential and temperature. We further show the existence of optimal voltage-temperature conditions for the efficient conversion of furfural to furfuryl alcohol or 2-methylfuran, highlighting the delicate influence of operating conditions on the selectivity of furfural reduction, in competition with the hydrogen evolution reaction in aqueous electrolytes. These performances are attributed to the resilience of Cu(I) species under operating conditions and their likely contribution to the electrocatalytic active site, as revealed by quasi-in situ photoelectron spectroscopy.
More
Translated text
Key words
electrocatalytic hydrogenation,furfural,furfurylalcohol,2-methylfuran,selective,high-pressurephotoemission,in situ
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined