Data from Relocation of CLIC1 Promotes Tumor Cell Invasion and Colonization of Fibrin

crossref(2023)

引用 0|浏览2
暂无评分
摘要
Abstract

Chloride intracellular channel 1 (CLIC1) has been shown to be upregulated in various malignancies but its exact function remains unclear. Here, it is revealed that CLIC1 is critical for the stability of invadopodia in endothelial and tumor cells embedded in a 3-dimensional (3D) matrix of fibrin. Invadopodia stability was associated with the capacity of CLIC1 to induce stress fiber and fibronectin matrix formation following its β3 integrin (ITGB3)-mediated recruitment into invadopodia. This pathway, in turn, was relevant for fibrin colonization as well as slug (SNAI2) expression and correlated with a significant role of CLIC1 in metastasis in vivo. Mechanistically, a reduction of myosin light chain kinase (MYLK) in CLIC1-depleted as well as β3 integrin-depleted cells suggests an important role of CLIC1 for integrin-mediated actomyosin dynamics in cells embedded in fibrin. Overall, these results indicate that CLIC1 is an important contributor to tumor invasion, metastasis, and angiogenesis.

Implications: This study uncovers an important new function of CLIC1 in the regulation of cell–extracellular matrix interactions and ability of tumor cells to metastasize to distant organs. Mol Cancer Res; 13(2); 273–80. ©2014 AACR.

更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要