Chrome Extension
WeChat Mini Program
Use on ChatGLM

Automated Monitoring System for Suspended Photocatalytic Batch Reactions Based on Online Circulatory Spectrophotometry

NANOMATERIALS(2024)

Cited 0|Views0
No score
Abstract
Employing an automated monitoring system (AMS) for data acquisition offers benefits, such as reducing the workload, in the kinetic study of suspended photocatalytic batch reactions. However, the current methods in this field tend to narrowly focus on the substrate and often overlook the optical characteristics of both the mixture and solid particles. To address this limitation, in this study, we propose a novel AMS based on online circulatory spectrophotometry (OCS) and incorporate debubbling, aeration, and segmented flow (DAS), named DAS-OCS-AMS. Initially, a debubbler is introduced to mitigate the issue of signal noise caused by bubbles (SNB). Subsequently, an aerated and segmented device is developed to address the issue of particle deposition on the inner wall of the pipeline (PDP) and on the windows of the flow cell (PDW). The proposed DAS-OCS-AMS is applied to monitor the kinetics of the photocatalytic degradation of Acid Orange II by TiO2 (P25), and its results are compared with those obtained using the traditional OCS-AMS. The comparative analysis indicates that the proposed DAS-OCS-AMS effectively mitigates the influence of SNB, PDP, and PDW, yielding precise results both for the mixture and solid particles. The DAS-OCS-AMS provides a highly flexible universal framework for online circulatory automated monitoring and a robust hardware foundation for subsequent data processing research.
More
Translated text
Key words
automated monitoring system,batch suspended photocatalytic reaction,online circulatory spectrophotometry,kinetic study
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined