Phosphorylation of PLPPR3 membrane proteins as signaling integrator at neuronal synapses

Cristina Kroon, Shannon Bareesel,Marieluise Kirchner,Niclas Gimber, Dimitra Ranti, Annika Brosig, Kathrin Textoris-Taube,Timothy A Zolnik, Philipp Mertins,Jan Schmoranzer, George Leondaritis,Britta J Eickholt

biorxiv(2024)

引用 0|浏览0
暂无评分
摘要
Phospholipid–phosphatase related protein 3 (PLPPR3, previously known as Plasticity Related Gene 2 or PRG2) belongs to a family of transmembrane proteins, highly expressed in neuronal development, which regulate critical growth processes in neurons. Prior work established crucial functions of PLPPR3 in axon guidance, filopodia formation and axon branching. However, little is known regarding the signaling events regulating PLPPR3 function. We identify here 26 high–confidence phosphorylation sites in the intracellular domain of PLPPR3 using mass spectrometry. Biochemical characterization established one of these — S351 — as a bona fide phosphorylation site of PKA. Experiments in neuronal cell lines suggest that phosphorylation of S351 does not regulate filopodia formation. Instead, it regulates binding to BASP1, a signaling molecule previously implicated in axonal growth and regeneration. Interestingly, both PLPPR3 intracellular domain and BASP1 enrich in presynapses in primary neurons. We propose that the presynaptic PLPPR3-BASP1 complex may function as novel signaling integrator at neuronal synapses. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要