Chrome Extension
WeChat Mini Program
Use on ChatGLM

Whole-Genome Resequencing of Ujimqin Sheep Identifies Genes Associated with Vertebral Number

ANIMALS(2024)

Cited 0|Views9
No score
Abstract
The number of vertebrae is an essential economic trait that can impact the carcass length and meat production in animals. However, our understanding of the candidate genes responsible for vertebral traits in sheep remains limited. To identify these candidate genes, we conducted a series of bioinformatics analyses. Remarkably, we discovered that the region controlling the sheep's vertebral variation may be situated on chromosome 7. Within this region, the ABCD4 gene emerged as a promising candidate gene for vertebral variation. This finding provides a promising perspective for unraveling the genetic basis of the vertebral number in sheep. The number of vertebrae is a crucial economic trait that can significantly impact the carcass length and meat production in animals. However, our understanding of the quantitative trait loci (QTLs) and candidate genes associated with the vertebral number in sheep (Ovis aries) remains limited. To identify these candidate genes and QTLs, we collected 73 Ujimqin sheep with increased numbers of vertebrae (T13L7, T14L6, and T14L7) and 23 sheep with normal numbers of vertebrae (T13L6). Through high-throughput genome resequencing, we obtained a total of 24,130,801 effective single-nucleotide polymorphisms (SNPs). By conducting a selective-sweep analysis, we discovered that the most significantly selective region was located on chromosome 7. Within this region, we identified several genes, including VRTN, SYNDIG1L, LTBP2, and ABCD4, known to regulate the spinal development and morphology. Further, a genome-wide association study (GWAS) performed on sheep with increased and normal vertebral numbers confirmed that ABCD4 is a candidate gene for determining the number of vertebrae in sheep. Additionally, the most significant SNP on chromosome 7 was identified as a candidate QTL. Moreover, we detected two missense mutations in the ABCD4 gene; one of these mutations (Chr7: 89393414, C > T) at position 22 leads to the conversion of arginine (Arg) to glutamine (Gln), which is expected to negatively affect the protein's function. Notably, a transcriptome expression profile in mouse embryonic development revealed that ABCD4 is highly expressed during the critical period of vertebral formation (4.5-7.5 days). Our study highlights ABCD4 as a potential major gene influencing the number of vertebrae in Ujimqin sheep, with promising prospects for future genome-assisted breeding improvements in sheep.
More
Translated text
Key words
Ujimqin sheep,vertebral number,whole-genome resequencing,ABCD4 gene
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined