Effect of a Lactobacilli-Based Direct-Fed Microbial Product on Gut Microbiota and Gastrointestinal Morphological Changes

John I. Alawneh,Hena Ramay, Timothy Olchowy,Rachel Allavena,Martin Soust, Rafat Al Jassim

ANIMALS(2024)

引用 0|浏览6
暂无评分
摘要
Simple Summary This study aimed to characterise and compare the development of gut microbiota in dairy calves from birth to weaning, focusing on the impact of a direct-fed microbial (DFM) product containing three strains of lactic acid bacteria (LAB). Forty-four Holstein-Friesian calves were randomly assigned to Treatment (TRT) and Control (CON) groups. TRT calves received a daily dose of the DFM, while CON calves received a placebo and served as the control. Faecal samples and necropsies were collected for analysis. TRT calves exhibited higher live weights at weaning and comparable average daily live weight gain and feed intake to CON calves. TRT calves also demonstrated greater weights of specific gut segments (duodenum, abomasum, reticulum) and enhanced rumen and intestinal development. The microbial diversity was more pronounced in the TRT group, with differences in the relative abundances of eight genera. This study suggests that supplementing with the LAB-based DFM positively influenced calfs' weight, gut development, and microbial diversity. Further research is recommended to explore potential associations between DFM products and gut mucosa-associated microbiota. Abstract The calf's gastrointestinal tract (GIT) microbiome undergoes rapid shifts during early post-natal life, which can directly affect calf performance. The objectives of this study were to characterise and compare differences in the establishment and succession of GIT microbiota, GIT morphological changes, and the growth of dairy calves from birth until weaned. Forty-four newborn Holstein-Friesian calves were randomly selected and assigned to Treatment (TRT) and Control (CON) groups. The TRT group calves received a once-daily dose of a direct-fed microbial (DFM) liquid product containing Lacticaseibacillus paracasei, Lentilactobacillus buchneri, and Lacticaseibacillus casei, all formerly known as Lactobacillus. Fresh faecal samples were manually taken from the rectum of all calves, and gross necropsy was performed on the forestomachs and gastrointestinal tracts. Bacterial DNA was extracted from frozen faecal samples for 16S rRNA gene amplicon sequencing. Calves in the TRT group had greater live weights (p = 0.02) at weaning compared with calves in the CON group (mean = 69.18 kg, SD = 13.37 kg). The average daily live weight gain (ADG) and total feed intake were similar between the two groups. Calves in the TRT group had greater duodenum, abomasum, and reticulum weights (p = 0.05). Rumen and intestinal development (p < 0.05) and faecal microbial diversity (p < 0.05) were more pronounced in the TRT group. The relative abundances of eight genera differed (p < 0.001) between the groups. Supplementing calves with the LAB-based DFM increased live weight at weaning and had a more pronounced effect on the development of rumen and the gastrointestinal tract and on microbiota diversity and evenness. Future work is needed to better understand the potential association of LAB-DFM products on gut mucosa-associated microbiota.
更多
查看译文
关键词
direct-fed microbials,GIT morphology,calves,live weight,diversity,microbiota
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要