Chrome Extension
WeChat Mini Program
Use on ChatGLM

Melatonin and Its Role in the Epithelial-to-Mesenchymal Transition (EMT) in Cancer

CANCERS(2024)

Cited 0|Views9
No score
Abstract
Simple Summary The epithelial-to-mesenchymal transition (EMT) is a process taking place during carcinogenesis. The phenotypic changes include the acquisition of new properties such as increased motility and polarity, leading to invasiveness and the formation of metastasis and chemo- and radioresistance. During the process, epithelial markers are lost whilst mesenchymal markers are overexpressed. EMT-related transcription factors are induced and multiple signaling pathways are activated. Several microRNAs are altered during the transition. Many of these molecules are regulated by melatonin, the pineal hormone, thus behaving as an inhibitor of the EMT in cancer progression. In this review, we summarize the present knowledge on the actions of melatonin on the EMT.Abstract The epithelial-to-mesenchymal transition (EMT) is a cell-biological program that occurs during the progression of several physiological processes and that can also take place during pathological situations such as carcinogenesis. The EMT program consists of the sequential activation of a number of intracellular signaling pathways aimed at driving epithelial cells toward the acquisition of a series of intermediate phenotypic states arrayed along the epithelial-mesenchymal axis. These phenotypic features include changes in the motility, conformation, polarity and functionality of cancer cells, ultimately leading cells to stemness, increased invasiveness, chemo- and radioresistance and the formation of cancer metastasis. Amongst the different existing types of the EMT, type 3 is directly involved in carcinogenesis. A type 3 EMT occurs in neoplastic cells that have previously acquired genetic and epigenetic alterations, specifically affecting genes involved in promoting clonal outgrowth and invasion. Markers such as E-cadherin; N-cadherin; vimentin; and transcription factors (TFs) like Twist, Snail and ZEB are considered key molecules in the transition. The EMT process is also regulated by microRNA expression. Many miRNAs have been reported to repress EMT-TFs. Thus, Snail 1 is repressed by miR-29, miR-30a and miR-34a; miR-200b downregulates Slug; and ZEB1 and ZEB2 are repressed by miR-200 and miR-205, respectively. Occasionally, some microRNA target genes act downstream of the EMT master TFs; thus, Twist1 upregulates the levels of miR-10b. Melatonin is an endogenously produced hormone released mainly by the pineal gland. It is widely accepted that melatonin exerts oncostatic actions in a large variety of tumors, inhibiting the initiation, progression and invasion phases of tumorigenesis. The molecular mechanisms underlying these inhibitory actions are complex and involve a great number of processes. In this review, we will focus our attention on the ability of melatonin to regulate some key EMT-related markers, transcription factors and micro-RNAs, summarizing the multiple ways by which this hormone can regulate the EMT. Since melatonin has no known toxic side effects and is also known to help overcome drug resistance, it is a good candidate to be considered as an adjuvant drug to conventional cancer therapies.
More
Translated text
Key words
melatonin,EMT,epithelial mesenchymal transition,carcinogenesis,cancer progression,signaling pathways
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined