Phase Transformation Temperature Prediction in Steels via Machine Learning

MATERIALS(2024)

Cited 0|Views1
No score
Abstract
The phase transformation temperature plays an important role in the design, production and heat treatment process of steels. In the present work, an improved version of the gradient-boosting method LightGBM has been utilized to study the influencing factors of the four phase transformation temperatures, namely Ac1, Ac3, the martensite transformation start (MS) temperature and the bainitic transformation start (BS) temperature. The effects of the alloying element were discussed in detail by comparing their influencing mechanisms on different phase transformation temperatures. The training accuracy was significantly improved by further introducing appropriate features related to atomic parameters. The melting temperature and coefficient of linear thermal expansion of the pure metals corresponding to the alloying elements, atomic Waber-Cromer pseudopotential radii and valence electron number were the top four among the eighteen atomic parameters used to improve the trained model performance. The training and prediction processes were analyzed using a partial dependence plot (PDP) and Shapley additive explanation (SHAP) methods to reveal the relationships between the features and phase transformation temperature.
More
Translated text
Key words
phase transformation temperature,steels,machine learning,atomic parameter
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined