Potential Mechanisms of the Protective Effects of the Cardiometabolic Drugs Type-2 Sodium-Glucose Transporter Inhibitors and Glucagon-like Peptide-1 Receptor Agonists in Heart Failure

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES(2024)

引用 0|浏览0
暂无评分
摘要
Different multifactorial pathophysiological processes are involved in the development of heart failure (HF), including neurohormonal dysfunction, the hypertrophy of cardiomyocytes, interstitial fibrosis, microvascular endothelial inflammation, pro-thrombotic states, oxidative stress, decreased nitric oxide (NO) bioavailability, energetic dysfunction, epicardial coronary artery lesions, coronary microvascular rarefaction and, finally, cardiac remodeling. While different pharmacological strategies have shown significant cardiovascular benefits in HF with reduced ejection fraction (HFrEF), there is a residual unmet need to fill the gap in terms of knowledge of mechanisms and efficacy in the outcomes of neurohormonal agents in HF with preserved ejection fraction (HFpEF). Recently, type-2 sodium-glucose transporter inhibitors (SGLT2i) have been shown to contribute to a significant reduction in the composite outcome of HF hospitalizations and cardiovascular mortality across the entire spectrum of ejection fraction. Moreover, glucagon-like peptide-1 receptor agonists (GLP1-RA) have demonstrated significant benefits in patients with high cardiovascular risk, excess body weight or obesity and HF, in particular HFpEF. In this review, we will discuss the biological pathways potentially involved in the action of SGLT2i and GLP1-RA, which may explain their effective roles in the treatment of HF, as well as the potential implications of the use of these agents, also in combination therapies with neurohormonal agents, in the clinical practice.
更多
查看译文
关键词
heart failure,SGLT2i,GLP1-RA,cardiometabolic drugs,heart failure management
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要