Assessing the Prediction Accuracy of Frequency Ratio, Weight of Evidence, Shannon Entropy, and Information Value Methods for Landslide Susceptibility in the Siwalik Hills of Nepal

SUSTAINABILITY(2024)

引用 0|浏览3
暂无评分
摘要
The main objective of this study is to assess the prediction and success rate based on bivariate frequency ratio (FR), weight of evidence (WoE), Shannon entropy (SE), and information value (IV) models for landslide susceptibility in the sedimentary terrain of Nepal Himalaya, as the area is facing threat for sustainable development as well as sustainable resource management. This study also seeks to evaluate the causative factors for landslide susceptibility. Initially, a landslide inventory map was created, consisting of 1158 polygons. These polygons were randomly divided into two sets, with a ratio of 70% for training and 30% for testing data. The multicollinearity approach was evaluated to assess the relevance of selected conditioning variables and their inclusion in the model construction process. The area under the curve (AUC) and other arithmetic evaluation methods were employed to validate and compare the outcomes of the models. In comparison, the predictive accuracy of the FR model surpasses that of the IV and SE models. The success rates, ranked in descending order, are as follows: WoE (79.9%), FR (75.3%), IV (74.4%), and SE (73.2%). Similarly, the success rates of four distinct models, namely WoE, FR, IV, and SE, are 85%, 78.75%, 78.57%, and 77.2%, correspondingly. All models have an accuracy and prediction rate exceeding 70%, making them suitable for assessing landslide susceptibility in the Siwalik Hills of Nepal. Nevertheless, the weight of evidence model provides more precise outcomes than other models. This study is expected to provide important information for road and settlement sustainability in the study area.
更多
查看译文
关键词
landslide susceptibility,bivariate models,Siwalik Hills,model comparison
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要