A comprehensive study on crystal structure, phase compositions of the BiVO4-LaVO4 binary dielectric ceramic system and a typical design of dielectric resonator antenna for C-band applications

Applied Materials Today(2024)

引用 0|浏览4
暂无评分
摘要
Novel multi-component (Bi1-xLax)VO4 (BLVOx) (0.05 ≤ x ≤ 0.9) solid-solution/composite ceramics crystal structures, phase compositions as well as its applications in the C-band dielectric resonator antenna have been designed and investigated. With the increased substitution of La3+, phase transitions among the monoclinic scheelite (mBiVO4), tetragonal zircon (zt(La,Bi)VO4) and monoclinic monazite (mLaVO4), driven by the compositional changes, were detected. La3+ played an essential role in the optimization of the dielectric properties of BLVOx. The measured Q × f values at the microwave band are considerably larger around the range of compositions forming the zircon phase and reached the maximum value (12,800 GHz) at pure zircon phase (x = 0.5), demonstrating that the impact of zircon structure on the intrinsic loss should not be disregarded and is beneficial for low dielectric loss. Meanwhile, the εr and TCF values could be tuned by regulating the concentration ratio of Bi3+/La3+ to obtain composites or solid-solutions with appropriate εr and near-zero TCF values. Additionally, a cylindrical dielectric resonator antenna (CDRA) of BVLO0.5 ceramic was designed with high simulated radiation efficiency (99.8%) and gain (4.58 dBi) at the center frequency (6.73 GHz), indicating its potential application in C-band because of its tunable permittivity and low-loss.
更多
查看译文
关键词
BiVO4,Low sintering temperature,Phase transition,Microwave dielectric ceramics,Dielectric resonator antenna
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要