Chrome Extension
WeChat Mini Program
Use on ChatGLM

Using Distributed Acoustic Sensing, Seismic and Infrasonic Observation to Track Pyroclastic Flows at Stromboli Volcano (Italy) 

crossref(2024)

Cited 0|Views12
No score
Abstract
Pyroclastic flows are highly hazardous phenomena demanding precise detection, localization, and comprehensive characterization for effective volcanic risk management. During October and December 2022, the volcanic activity of Stromboli produced more than 60 pyroclastic flows. The flows propagated from the craters (~700 m a.s.l.) to the sea, resulting in tsunami waves ranging from centimetres to meters in height. These events coincided with an experiment involving distributed acoustic sensing (DAS) data acquisition with a dedicated 4-kilometer-long fibre-optic cable. A 3-component array consisting of 27 geophones and the multi-parameter monitoring network managed by the Laboratory of Experimental Geophysics (LGS) at the University of Florence were active simultaneously. We study two distinct pyroclastic flows of varying intensities. Using array processing techniques applied to DAS, seismic, and infrasonic measurements, we estimate back-azimuths that consistently track flows moving at velocities between 40 and 50 m/s from the craters to the shoreline. Validation of these measurements was accomplished through georeferenced images obtained by a visible camera, affirming their accuracy. These results demonstrate the effectiveness of the three datasets in monitoring pyroclastic flows and the need for multi-parametric observations for a better interpretation of volcanic phenomena.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined