Locating the Auckland Volcanic Field's magma reservoir through magma pathway retrogression

crossref(2024)

引用 0|浏览1
暂无评分
摘要
The Auckland Volcanic Field (AVF) consists of ~53 volcanoes, distributed over an area of ~ 360 km2. Located within the AVF is Auckland City, New Zealand’s largest population centre (~1.7M people), highlighting the need to adequately model future pre-eruption scenarios for enhanced preparedness. Geological evidence shows that past eruptions were variably explosive and formed maars, lava shields, and tuff rings, largely controlled by the extent of magma-water interaction. Any future eruption from a new vent location within the AVF would cause significant socio-economic impacts, extensive evacuations, and national-scale impacts. Our work aims to constrain the next probable vent location using novel physics-based approaches. Current approaches to identifying the next AVF vent location use statistical analysis to define probability maps. Here we use a novel approach based on physical understanding of dyke propagation and newly developed 3D numerical codes that consider crustal stresses as the main controls on the orientation of dyke pathways. We estimate regional stresses based on GNSS data and consider surface mass redistributions at the Hauraki Rift and other volcano-tectonic structures in the wider area to constrain the overall elastic stress field. We backtrack magma pathways from known vent locations downward through the crust. Pathways are oblique and reach below the Hauraki Gulf or Firth of Thames (~30 km E of Auckland City) at the inferred depth of magma dyke release (35-50 km). We infer a common magma source is physically plausible in that location. Further work will improve the robustness of the model, constrain the spatial spread of vents over time, dyke propagation velocity, and implications for early identification of future volcanic unrest.  
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要