The defining roles of sterodynamic sea level in future climate projections

crossref(2024)

引用 0|浏览11
暂无评分
摘要
Our ability to characterize and quantify the complex uncertainties surrounding future sea-level changes is crucial for coastal risk assessments and adaptation strategies. This study focuses on the role of steric and dynamic changes (i.e., sterodynamics) in sea level projections, particularly regarding their contribution to the uncertainty of global and regional sea level changes in relation to other components such as ice sheet dynamics. A probabilistic framework is used to estimate probability distributions of sea-level change for each component. Through variance decomposition, the total uncertainty in sea-level change is dissected into its constituent sources. Subsequently, the relative contribution of sterodynamics uncertainty is quantified across various regions, time frames, emission scenarios, and projection methodologies utilized to estimate future sea-level distributions. The contribution of sterodynamics to overall uncertainty reduces over time as the contribution from ice sheets becomes more pronounced. The spatiotemporal pattern of sterodynamic significance is not strongly dependent on future greenhouse gas emissions, yet its overall role is highly dependent on the representation (e.g., emulation) of ice sheets. When high-end, low-probability estimates of future Antarctic ice sheet contributions are excluded, sterodynamics remain a dominant source of regional sea-level uncertainty at the end of this century, particularly along the US East Coast and European coast. These regions are also identified as hotspots for future sea-level rise, indicating that sterodynamic processes will play a significant role in assessing coastal vulnerabilities there. This study suggests that ocean model development can most effectively reduce the overall uncertainty in future sea-level projections by focusing on these areas.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要