Environmental Players in the Lifespan of Landslides

Xie Hu, Yuqi Song, Yiling Lin

crossref(2024)

Cited 0|Views4
No score
Abstract
Landslides can move at divergent rates on the terrestrial planets. The occurrence and evolution of landslides are strongly affected by the stochastic nature of environment. Landslide activities are complicated by climate change and the attendant escalating number of extreme precipitation events. Here we use multi-source geodetic and remote sensing data (e.g., SAR and optical scenes, as well as climate reanalysis products) and skillsets (e.g., InSAR, pixel offset tracking, and AI) to disentangle the role of environmental players (e.g., water, wind, temperature, and tectonics) in the lifespan of landslides. The perpetual slow-moving landslide in Colorado Plateau will be exemplified to highlight the importance of pore fluid water from rainwater and snowmelt in regulating landslide speeds. An analog landslide to those on Mars will be exemplified to demonstrate an appropriate orientation and layout of topography may help promote eolian abrasion and landslide reactivation. The growth in the area and number of retrogressive thaw slumps in Qinghai-Tibet Plateau will be exemplified to unveil the tragedy of permafrost degradation due to warming temperature and ice-rich permafrost thaw. The spatial proximity of landslides to tectonic faults in California will be exemplified to show exacerbated landslide hazards by occasional dynamic shaking and prolonged weakening of materials.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined