Chrome Extension
WeChat Mini Program
Use on ChatGLM

Urea Synthesis from N2 and CO2 over Dual-Atom Catalysts: A High-Throughput Computational Insight

Energy & fuels(2024)

Cited 0|Views9
No score
Abstract
The simultaneous electrocatalytic conversion of N-2 and CO2 into value-added urea is a promising approach to utilizing CO2 as a feedstock for the sustainable production of chemicals. Designing cost-effective electrocatalysts for simultaneous activation of N-2 and CO2 on distinct active sites is challenging due to the inertness of N-2 and the competing reduction of CO2 to other products. To address this, we systematically designed various dual-atom anchored on two-dimensional C2N and found that the presence of dual metal atoms on the C2N generates excess surface-charge density, favoring the activation of CO2 and N-2. The screening results demonstrate that ReV@C2N is the optimal candidate for driving the urea synthesis, as it facilitates stable binding of both N-2 and CO2. This could be attributed to the presence of dual metal atoms on C2N, which generate excess surface-charge density that favors the activation of CO2 and N-2. In addition, we have thoroughly investigated the C-N coupling process. This observation can be explained by the spontaneous coupling of the obtained CO moiety into the activated N-N bond to form NCON, which is driven by the thermodynamic driving force and orbital overlap of the adsorbed N-2 and CO.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined