Heterojunction of MXenes and MN4-graphene: Machine learning to accelerate the design of bifunctional oxygen electrocatalysts

JOURNAL OF COLLOID AND INTERFACE SCIENCE(2024)

引用 0|浏览4
暂无评分
摘要
Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential for the development of excellent bifunctional electrocatalysts, which are key functions in clean energy production. The emphasis of this study lies in the rapid design and investigation of 153 MN4-graphene (Gra)/ MXene (M2NO) electrocatalysts for ORR/OER catalytic activity using machine learning (ML) and density functional theory (DFT). The DFT results indicated that CoN4-Gra/Ti2NO had both good ORR (0.37 V) and OER (0.30 V) overpotentials, while TiN4-Gra/ M2NO and MN4-Gra/Cr2NO had high overpotentials. Our research further indicated orbital spin polarization and d-band centers far from the Fermi energy level, affecting the adsorption energy of oxygen-containing intermediates and thus reducing the catalytic activity. The ML results showed that the gradient boosting regression (GBR) model successfully predicted the overpotentials of the monofunctional catalysts RhN4-Gra/Ti2NO (ORR, 0.39 V) and RuN4-Gra/W2NO (OER, 0.45 V) as well as the overpotentials of the bifunctional catalyst RuN4-Gra/ W2NO (ORR, 0.39 V; OER, 0.45 V). The symbolic regression (SR) algorithm was used to construct the overpotential descriptors without environmental variable features to accelerate the catalyst screening and shorten the trial -and -error costs from the source, providing a reliable theoretical basis for the experimental synthesis of MXene heterostructures.
更多
查看译文
关键词
Machine learning,Density functional theory,MXenes heterojunction,Oxygen reduction reaction,Oxygen evolution reaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要