The Effect of SnO<sub>2</sub> and Rh on Pt Nanowire Catalysts for Ethanol Oxidation

Catalysis Research(2024)

引用 0|浏览4
暂无评分
摘要
In this study, we synthesized Pt-Rh nanowires (NWs) through chemical reduction of metallic precursors using formic acid at room temperature, excluding the use of surfactants, templates, or stabilizing agents. These NWs were supported on two substrates: carbon (Vulcan XC-72R) and carbon modified with tin oxide (SnO2) via the sol-gel method (10 wt.% SnO2). We explored the electroactivity of Pt/SnO2/C, Pt-Rh/C, Pt-Rh/SnO2(commercial)/C (commercial SnO2), and Pt-Rh/SnO2/C NWs toward electrochemical oxidation of ethanol in acidic media using various techniques, including CO-stripping, cyclic voltammetry, derivative voltammetry, chronoamperometry, and steady-state polarization curves. Physical characterization involved X-ray diffraction and transmission electron microscopy. The synthesized NWs exhibit higher ethanol oxidation activity than the commercial Pt/C (Johnson Matthey™) catalyst. Rh atoms are hypothesized to enhance complete ethanol oxidation, while the NW morphology improves ethanol adsorption at the catalyst surface for subsequent oxidation. Additionally, the choice of support material plays a significant role in influencing the catalytic activity. The superior catalytic activity of Pt-Rh/SnO2/C NWs may be attributed to the facile dissociation of the C-C bond, low CO adsorption (electronic effect due to Rh presence), and the bifunctional mechanism facilitated by the oxophilic nature of the SnO2 support.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要