From an Ocean-like to Methanogenesis-dominated carbon cycle in the Dziani Dzaha Lake

Pierre Cadeau,Magali Ader, Pierre Cartigny, Ivan Jovovic, Pierre Adam,Vincent Grossi

crossref(2024)

引用 0|浏览0
暂无评分
摘要
Over geological times, the evolution of carbon isotope composition of carbonates (δ13Ccarb) in the sedimentary record is punctuated by numerous positive isotopic excursions (CIEs), which reflect significant perturbations of the carbon cycle on Earth surface environments. Such isotopic events are mainly interpreted as a consequence of an increase of organic carbon burial in sediments. However, the significant spatial and temporal variability observed in many Proterozoic sedimentary successions recording positive CIEs still challenge this postulate. Among others, the potential influence of methanogenesis has been raised to explain at least a part of the variability observed during CIEs. The Dziani Dzaha is a shallow tropical volcanic crater lake located on the Petite Terre Island of Mayotte (Comoros Archipelago, Indian Ocean). Its water most likely originate from the nearby ocean through bedrock seepage thanks to the fracturation associated with the phreatomagmatic eruption at that formed the crater 7 to 4 Kyr ago. Based on numerous analogies, this atypical modern lacustrine system was considered as an analogue of Proterozoic environments, and more specifically of those having recorded strongly positive δ13C values, such as for example the Lomagundi-Jatuli event. A previous study demonstrated the significant role of methane in the Dziani Dzaha carbon cycle through an intense organic matter degradation by methanogenesis associated with methane degassing into the atmosphere. Here, in order to investigate the processes responsible for the onset of this methanogenic activity, we present coupled C and S isotope records in a sediment core of the lake. Based on geochemical and sedimentological evidences, four different units have been identified in the sediment core. From the bottom to the top, carbon and sulfur isotopic signatures in the first unit are similar to modern oceanic values (δ13Corg ~ -25‰, δ13Ccarb ~ 0‰ and δ34Spy ~ -20‰), which is consistent with a marine origin of the lake water. In the second unit, the δ34Spy increases progressively from -20‰ to -10‰ while the δ13C of organic and inorganic carbon remain constant, which is consistent with a progressive consumption of the sulfate pool through the degradation of organic matter by sulfatoreduction in a restricted environment. The δ34Spy shifts sharply to 35‰ at the transition with the third unit where it remains constant up to the top, while both organic and inorganic carbon isotopic signatures increase progressively from -25‰ to -14‰ and from 0‰ to almost 20‰, respectively. This turning point most likely results from a depletion of the initial sulfate pool to a point allowing part of the organic matter to be remineralized through methanogenesis with a degassing of methane into the atmosphere. These results highlight the potential of C-S-isotope coupling to identify a potential impact of methanogenesis on the carbon-isotope signatures observed in the sedimentary record through geological times.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要