The pulse-like dynamics of large earthquakes illuminated by a minimal elastodynamic model

crossref(2024)

引用 0|浏览0
暂无评分
摘要
Observations suggest that large earthquakes often propagate as self-healing slip pulses but the mechanical reason of this ubiquity remains debated. Pulse-like ruptures differ from the classical crack-like dynamics by the fact that the slipping portion of the fault is limited to the immediate vicinity of the propagating tip. In this work, we first propose a minimal model describing the dynamics of large earthquakes. In its simplest form, the model contains only two free parameters: a dimensionless stress parameter characterizing the initial state of stress along the fault and a ratio of elastic moduli. The model illuminates how self-healing slip pulses can be produced by the paucity of elastic strain energy that arises once the rupture dynamics interplays with the finite geometry of fault zones—even in the absence of additional mechanisms such as rate-dependent friction. Next, we discuss the example of faults surrounded by a damage zone whose reduction in elastic wave velocity restricts the flow of strain energy to the rupture tip and promotes pulse-like rupture. Using the proposed model, we demonstrate how the contrast in wave velocities and the initial stress level in the fault zone mediate the propagation mode of the earthquake.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要