The microstructure of naturally deformed gneissic Zechstein 2 rock salt (Kristallbrockensalz) from the northern Netherlands – a review

crossref(2024)

引用 0|浏览0
暂无评分
摘要
Janos Urai's contributions have significantly enhanced our understanding of salt deformation, particularly in predicting the long-term evolution of solution-mined caverns and radioactive-waste repositories in salt formations. His work delved into phenomena such as the weakening of rock salt by water during long-term creep at low differential stresses. Unlike most laboratory measurements, which are at higher differential stress, Urai's research considers dislocation creep and pressure solution (dissolution-precipitation creep), processes not commonly included in current engineering predictions. Microstructural observations on Zechstein 2 (Z2) rock salt cores in the northern Netherlands reveal substantial grain-size-dependent differences in rock salt rheology. The study compares undeformed salt layers with strongly deformed diapiric ones, showcasing variations in megacrystals and fine-grained halite microstructures that point to different microphysical processes. The microstructural analysis, including optical microscopy of gamma-irradiated thin sections, recrystallized grain-size measurements, electron microscopy, and subgrain-size piezometry, indicates differential stresses between 0.5 and 2 MPa during deformation. The findings highlight the importance of pressure solution creep at low differential stresses, demonstrating its significant impact on strain rate in rock salt. Integrating these results into constitutive flow laws reveals a four-order-of-magnitude difference in strain rates between halite types, emphasizing the role of different dominant deformation mechanisms. The study suggests that incorporating pressure solution creep and microstructural analysis can substantially enhance engineering and tectonic models of rock salt deformation in low-stress conditions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要