谷歌浏览器插件
订阅小程序
在清言上使用

Charting the main sequence of star-forming galaxies out to redshifts z 7

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
We present a new determination of the star-forming main sequence (MS), obtained through stacking 100k K-band-selected galaxies in the far-IR Herschel and James Clerk Maxwell Telescope (JCMT) imaging. By fitting the dust emission curve to the stacked far-IR photometry, we derive the IR luminosities (LIR) and, hence, star formation rates (SFR) out to z 7. The functional form of the MS is found, with the linear SFR-M* relation that flattens at high stellar masses and the normalization that increases exponentially with redshift. We derive the corresponding redshift evolution of the specific star formation rate (sSFR) and compare our findings with the recent literature. We find our MS to be exhibiting slightly lower normalization at z<=2 and to flatten at larger stellar masses at high redshifts. By deriving the relationship between the peak dust temperature (Td) and redshift, where Td increases linearly from  20K at z=0.5 to  50 K at z=6, we conclude that the apparent inconsistencies in the shapes of the MS are most likely caused by the different dust temperatures assumed when deriving SFRs in the absence of far-IR data. Finally, we investigate the derived shape of the star-forming MS by simulating the time evolution of the observed galaxy stellar mass function (GSMF). While the simulated GSMF is in good agreement with the observed one, some inconsistencies persist. In particular, we find the simulated GSMF to be somewhat overpredicting the number density of low-mass galaxies at z>2.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要