The XMM-Newton Line Emission Analysis Program (X-LEAP) II: The Multi-scale Temperature Structures in the Milky Way Hot Gas

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
This paper presents the multi-scale temperature structures in the Milky Way (MW) hot gas, as part of the XMM-Newton Line Emission Analysis Program (X-LEAP), surveying the O VII, O VIII, and Fe-L band emission features in the XMM-Newton archive. In particular, we define two temperature tracers, I_ OVIII/I_ OVII (O87) and I_ FeL/(I_ OVII+I_ OVIII) (FeO). These two ratios cannot be explained simultaneously using single-temperature collisional ionization models, which indicates the need for multi-temperature structures in hot gas. In addition, we show three large-scale features in the hot gas: the eROSITA bubbles around the Galactic center (GC); the disk; and the halo. In the eROSITA bubbles, the observed line ratios can be explained by a log-normal temperature distribution with a median of log T/ K≈ 6.4 and a scatter of σ_T ≈ 0.2 dex. Beyond the bubbles, the line ratio dependence on the Galactic latitude suggests higher temperatures around the midplane of the MW disk. The scale height of the temperature variation is estimated to be ≈2 kpc assuming an average distance of 5 kpc for the hot gas. The halo component is characterized by the dependence on the distance to the GC, showing a temperature decline from log T/ K ≈ 6.3 to 5.8. Furthermore, we extract the auto-correlation and cross-correlation functions to investigate the small-scale structures. O87 and FeO ratios show a consistent auto-correlation scale of ≈5^∘ (i.e., ≈400 pc at 5 kpc), which is consistent with expected physical sizes of X-ray bubbles associated with star-forming regions or supernova remnants. Finally, we examine the cross-correlation between the hot and UV-detected warm gas, and show an intriguing anti-correlation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要