谷歌浏览器插件
订阅小程序
在清言上使用

Management zone classification for variable-rate soil residual herbicide applications

Precision Agriculture(2024)

引用 0|浏览1
暂无评分
摘要
The use of soil residual herbicides, along with other practices that diversify weed management strategies, have been recommended to improve weed management and deter the progression of herbicide resistance. Although soil characteristics influence recommended application rates for these herbicides, the common practice is to apply a uniform dose of soil residual herbicides across fields with variable soil characteristics. Mapping fields for soil characteristics that dictate the optimal dose of soil residual herbicides could improve the efficiency and effectiveness of these herbicides, as well as improve environmental stewardship. The objectives of this research were to develop and quantify the accuracy of management zone classifications for variable-rate residual herbicide applications using multiple soil data sources and soil sampling intensities. The maps were created from soil data that included (i) Soil Survey Geographic database (SSURGO), (ii) soil samples (SS), (iii) soil samples regressed onto soil electrical conductivity (EC) measurements (SSEC), (iv) soil samples with organic matter (OM) data from SmartFirmer® (SF) sensors (SSSF), and (v) soil samples regressed onto EC measurements plus OM data from SmartFirmer® sensor (SSECSF). A modified Monte Carlo cross validation method was used on ten commercial Indiana fields to generate 36,000 maps across all sources of spatial soil data, sampling density, and three representative herbicides (pyroxasulfone, s-metolachlor, and metribuzin). Maps developed from SSEC data were most frequently ranked with the highest management zone classification accuracy compared to maps developed from SS data. However, SS and SSEC maps concurrently had the highest management zone classification accuracy of 34
更多
查看译文
关键词
Variable-rate applications,Residual herbicides,Geostatistics,Monte carlo cross-validation,Soil sampling intensity,Electrical conductivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要