Chrome Extension
WeChat Mini Program
Use on ChatGLM

Both acute glyphosate and the aminomethylphosphonic acid intoxication decreased the acetylcholinesterase activity in rat hippocampus, prefrontal cortex and gastrocnemius muscle

DRUG AND CHEMICAL TOXICOLOGY(2024)

Cited 0|Views1
No score
Abstract
It has been reported that glyphosate, one of the most common herbicides used in agriculture, impairs locomotion and cognition. Glyphosate has a variable half-life in soil up to biotic and/or abiotic factors transform the molecule in metabolites such as the aminomethylphosphonic acid (AMPA) that has a longer half-life. In this study, female Sprague Dawley rats were acutely exposed to different doses of glyphosate or AMPA (i.e. 10, 56 or 100 mg/kg) and, subsequently, the acetylcholinesterase (AChE) activity was measured in the hippocampus, prefrontal cortex (PFC) and the gastrocnemius muscle. Both glyphosate and AMPA produced a similar decrease in the AChE activity in all the tissues tested. These results suggest that interference with normal cholinergic neurotransmission may be one of the mechanisms involved in glyphosate-induced motor alterations in rats. Moreover, our results highlight the biological importance of AMPA as a molecule with anticholinesterase action in brain and skeletal muscle. To our knowledge, this is the first report showing in vivo that AMPA, the major metabolite of glyphosate, behaves as an organophosphate.
More
Translated text
Key words
Aminomethylphosphonic acid,glyphosate,hippocampus,prefrontal cortex,gastrocnemius muscle,acetylcholinesterase activity
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined