13C-SpaceM: Spatial single-cell isotope tracing reveals heterogeneity of de novo fatty acid synthesis in cancer.

bioRxiv : the preprint server for biology(2024)

引用 0|浏览3
暂无评分
摘要
Metabolism has emerged as a key factor in homeostasis and disease including cancer. Yet, little is known about the heterogeneity of metabolic activity of cancer cells due to the lack of tools to directly probe it. Here, we present a novel method, 13C-SpaceM for spatial single-cell isotope tracing of glucose-dependent de novo lipogenesis. The method combines imaging mass spectrometry for spatially-resolved detection of 13C6-glucose-derived 13C label incorporated into esterified fatty acids with microscopy and computational methods for data integration and analysis. We validated 13C-SpaceM on a spatially-heterogeneous normoxia-hypoxia model of liver cancer cells. Investigating cultured cells, we revealed single-cell heterogeneity of lipogenic acetyl-CoA pool labelling degree upon ACLY knockdown that is hidden in the bulk analysis and its effect on synthesis of individual fatty acids. Next, we adapted 13C-SpaceM to analyze tissue sections of mice harboring isocitrate dehydrogenase (IDH)-mutant gliomas. We found a strong induction of de novo fatty acid synthesis in the tumor tissue compared to the surrounding brain. Comparison of fatty acid isotopologue patterns revealed elevated uptake of mono-unsaturated and essential fatty acids in the tumor. Furthermore, our analysis uncovered substantial spatial heterogeneity in the labelling of the lipogenic acetyl-CoA pool indicative of metabolic reprogramming during microenvironmental adaptation. Overall, 13C-SpaceM enables novel ways for spatial probing of metabolic activity at the single cell level. Additionally, this methodology provides unprecedented insight into fatty acid uptake, synthesis and modification in normal and cancerous tissues.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要