Oxygen vacancy based WO3/SnO2-x promote electrochemical H2O2 accumulation by two-electron water oxidation reaction and toxic uniform dimethylhydrazine degradation.

The Science of the total environment(2024)

引用 0|浏览0
暂无评分
摘要
The key to constructing an anodic electro-Fenton system hinges on two pivotal criteria: enhancing the catalyst activity and selectivity in water oxidation reaction (WOR), while simultaneously inhibiting the decomposition of hydrogen peroxide (H2O2) which is on-site electrosynthesized at the anode. To address the issues, we synthesized novel WO3/SnO2-x electrocatalysts, enriched with oxygen vacancies, capitalize on the combined activity and selectivity advantages of both WO3 and SnO2-x for the two-electron pathway electrocatalytic production of H2O2. Moreover, the introduction of oxygen vacancies plays a critical role in impeding the decomposition of H2O2. This innovative design ensures that the Faraday efficiency and yield of H2O2 are maintained at over 80 %, with a noteworthy production rate of 0.2 mmol h-1 cm-2. We constructed a novel electro-Fenton system that operates using only H2O as its feedstock and applied it to treat highly toxic uniform dimethylhydrazine (UDMH) from rocket launch effluent. Our experiments revealed a substantial total organic carbon (TOC) removal, achieving approximately 90 % after 120 mins of treatment. Additionally, the toxicity of N-nitrosodimethylamine (NDMA), a byproduct of great concern, was shown to be effectively mitigated, as evidenced by acute toxicity evaluations using zebrafish embryos. The degradation mechanism of UDMH is predominantly characterized by the advanced oxidative action of H2O2 and hydroxyl radicals, as well as by complex electron transfer processes that warrant further investigation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要