Backbone and Side Group Interchain Correlations Govern Wide-Angle X-ray Scattering of Poly(3-hexylthiophene)

ACS MACRO LETTERS(2024)

引用 0|浏览0
暂无评分
摘要
Identifying the origin of scattering from polymer materials is crucial to infer structural features that can relate to functional properties. Here, we use our recently developed virtual-site coarse graining to accelerate atomistic simulations and show how various molecular features govern wide-angle X-ray scattering from a conjugated polymer, poly(3-hexylthiophene) (P3HT). The efficient molecular dynamics simulations can represent the structure and capture the emergence of crystalline order from amorphous melts upon cooling while retaining atomistic details of chain configurations. The scattering extracted from simulations shows good agreement with wide-angle X-ray scattering experiments. Amorphous P3HT exhibits broad scattering peaks: a high-q peak from interchain side-group correlations and a low-q peak from interchain backbone-backbone correlations. During amorphous to crystalline phase transitions, the distance between backbones along the side-group direction increases because of lack of interdigitation in the crystalline phase. Scattering from pi-pi stacking emerges only after crystallization takes place. Intrachain correlations contribute negligibly to the scattering from the amorphous and crystalline phases.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要