Clouds and Seasonality on Terrestrial Planets with Varying Rotation Rates 

Daniel Williams,Xuan Ji, Paul Corlies,Juan Lora

crossref(2024)

引用 0|浏览1
暂无评分
摘要
Clouds have been observed on Venus, Mars and Titan, and a growing number of exoplanets, yet the connection between planetary rotation rate and cloud distribution has not previously been extensively investigated. Using an idealised climate model incorporating seasonal forcing, we investigate the impact of rotation rate on the abundance of clouds on an Earth-like aquaplanet, and the resulting impacts upon albedo and seasonality. We show that the cloud distribution varies significantly with season, depending strongly on the rotation rate, and is well explained by the large-scale circulation and atmospheric state. Planetary albedo displays non-monotonic behaviour with rotation rate, peaking around one half of Earth’s rotation rate. Clouds reduce the surface temperature and total precipitation relative to simulations without clouds at all rotation rates, and reduce the dependence of precipitation on rotation rate. Clouds also affect the amplitude and timing of seasonality, in particular by modifying the width of the Hadley cell at intermediate rotation rates. The timing of seasonal transitions varies with rotation rate; the addition of clouds further modifies this phase lag, most notably at Earth-like rotation rates. Our results may inform future characterisation of terrestrial exoplanets, in particular informing estimates of planetary rotation for non-synchronous rotators.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要