Increased predictability of extreme El Niño from decadal interbasin interaction

crossref(2024)

引用 0|浏览5
暂无评分
摘要
Predicting extreme El Niño–Southern Oscillation (ENSO) events remains a formidable task. Utilizing eigen microstates (EMs) of complex systems, we elucidate the interplay of two key sea surface temperature (SST) anomaly modes, the newly identified North Atlantic–west Pacific Mode (NAPAM) and discovered Victoria Mode (VM). Our findings demonstrate that a cold NAPAM phase coupled with a positive VM phase markedly elevates the probability of extreme El Niño events; NAPAM's decadal variability serves as a key modulator of extreme El Niño events' frequency. Our empirical model, capitalizing on these modes, achieves robust forecasts with a 6–8 month lead time and boasts a 0.73 correlation with the observed ENSO index in hindcasts. Notably, the model precisely forecasts the intensity of four landmark extreme El Niño episodes: 1982/1983, 1987/1988, 1997/1998, and 2015/2016. Our findings offer promising avenues for refining ENSO predictive frameworks and deepen our understanding of the key climatic drivers.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要