Folding of subducting slabs controls their deep thermal structures in the mantle transition zone 

crossref(2024)

引用 0|浏览2
暂无评分
摘要
The thermal structure of slabs is thought to be a key parameter for deep-focus earthquakes in subduction zones, since most proposed mechanisms, such as transformational faulting, dehydration reactions or shear instabilities, are controlled by temperature. However, the classical (shallow) thermal parameter "phi", associated to the downward advection of isotherms and approximated as slab age x sinking velocity (Kirby et al., 1996), does not explain deep-focus seismicity occurring in relativelty “hot” subduction zones, e.g. under Bolivia.   On the other hand, the various morphologies if subducting slabs imaged by seismic tomography reveal reveal the diversity of slab deformation histories in the transition zone as they reach the high-viscosity lower mantle, e.g. folding, deflection, vertical piling.   Using numerical models of subduction dynamics, we propose here to characterize the spatio-temporal evolution of deep thermal structures of subducted slabs throughout various subduction scenarios. We investigate how the maximum depth reached by a given isotherm vary through time (up to 200 km for a given subduction zone). In particular, we evidence the key control of the history of slab-folding in the transition zone (folding amplitude and frequency), associated to e.g. slab viscosity and buoyancy.   Hence the past dynamics of subduction zones, in addition to present-day subduction parameters, has to be taken into account to predict slabs thermal structures.   This work is part of ANR project RheoBreak (ANR-21-CE49-0009).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要