Rethinking operational VGOS observations

crossref(2024)

引用 0|浏览1
暂无评分
摘要
The VLBI Global Observing System (VGOS) was created to meet the ambitious requirements set by the Global Geodetic Observing System (GGOS). Its primary objective is achieving millimeter-level precision while maintaining continuous 24/7 observations. Currently, both aims remain unfulfilled. Simultaneously, new requirements, such as the development of a dedicated VGOS Celestial Reference Frame (CRF), have emerged. Thus, a reevaluation of our current VGOS observational framework is necessary to reach the VGOS goals. This study addresses three pivotal challenges within VGOS: attaining millimeter precision, providing observations for a CRF, and achieving uninterrupted 24/7 observations. Each of these topics demand a readjustment of our current observation scheduling methodology. Based on insight from VGOS R&D sessions, this work discusses potential approaches to meet the requisite precision through shorter, signal-to-noise-driven observations. Additionally, it explores the combination of this methodology with source-based scheduling to facilitate the creation of essential observations for establishing a dedicated VGOS CRF. Finally, it addresses the issue of reaching 24/7 observations, currently limited by data transfer and correlation capacities. To overcome this, a potential solution involves a significant reduction in the recorded data volume per session by temporarily thinning out the schedule. Thus, it comes with a trade-off in precision. This concept might be seen as a paradigm shift in VLBI observations, traditionally striving for the highest precision possible, which we believe is worth being discussed. Based on observation statistics and Monte-Carlo simulations, we will elaborate on the expected impact of this approach. 
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要