Reactive transport modelling reveals changes in properties of tropical soils subjected to enhanced silicate weathering

Juliette Glorieux,Yves Goddéris, Sylvain Kuppel,Pierre Delmelle

crossref(2024)

引用 0|浏览2
暂无评分
摘要
Applied regionally to cropland soils, enhanced silicate weathering (ESW) is advocated as a viable technology for enhancing the consumption of atmospheric CO2, while also providing ancillary benefits to soil fertility and crop growth. However, important uncertainties remain regarding the short- and long-term effects of silicate addition on weathering rate and soil properties. To address this issue, we adapted and used the reactive transport model WITCH1 to simulate weathering in a tropical soil (Oxisol) amended annually with 50 t ha-1 of crushed basalt over five years. We monitored the changes in the soil chemical properties, primary and secondary mineralogy and CO2 consumption rate over a 10-year period. The modelling results confirm that the instantaneous CO2 consumption rate increases with basalt application. Basalt weathering increases the pH of the soil solution, from acidic to alkaline values, and releases Ca, Mg and K in solution, thus serving as a plant nutrient source. We also found that allophanes may form in the Oxisol in response to dissolution of the basalt’s glass and plagioclases. As evidenced in volcanic soils, allophanes typically exhibit a significant potential for organic carbon stabilisation. The formation of allophanes in the Oxisol treated with basalt may improve aggregation processes, water retention and hydraulic conductivity, but may decrease phosphate availability further. Our modelling study highlights that the intentional application of basalt to a tropical soil affects various soil properties significantly. The short and long-term impacts of these changes on soil functioning will need to be assessed. 1Goddéris et al., 2006. GCA 70:1128-1147
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要