Towards a 2D model of Discrete Fracture Network with permeability and friction evolution for modeling fluid-induced seismicity 

crossref(2024)

引用 0|浏览1
暂无评分
摘要
Numerical modeling of Discrete Fracture Networks (DFNs) is commonly used to assess the behavior and properties of hydraulic diffusion and seismicity in the Earth’s crust within a network of fractures and faults, and to study the hydromechanical evolution of fractured reservoirs stimulated by hydraulic injection and production. The modelling of such fractures is typically carried out under a quasi-static approximation, and occasionally accounting for elasto-dynamics in single-rupture studies that assume a slip-weakening friction law.  In this work, we develop a 2D DFN model to simulate fluid-induced seismicity that couples hydraulic diffusion and slip governed by rate-and-state friction on multiple interacting faults. The main goal of this numerical model is to establish a connection between laboratory derived friction parameters and field observations, enabling the inference of the long-term evolution of fractured reservoirs and crustal fault systems undergoing multiple earthquakes and (slow) slip events induced by fluid pressure perturbations. In the model, the elastic interactions are computed with a boundary element method, accelerated by the hierarchical matrix method. We assessed the convergence of the method at fracture junctions and verified it does not create unphysical singularities. The use of rate-and-state friction makes it possible to model several seismic events over the injection duration. The simulations will be later used to fit measurements of permeability and friction collected in laboratory experiments, in-situ observations of fault slip and opening from fluid injection experiments at decametric scale, and finally, induced seismicity at reservoir scale.  
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要