Prediction of the Structure of the Corona for the 2024 Total Solar Eclipse:  A Continuously Updated Model

crossref(2024)

引用 0|浏览9
暂无评分
摘要
Total solar eclipses offer an unparalleled opportunity to observe the low and middle corona.  As is our tradition, the solar physics team at Predictive Science is predicting the structure of the solar corona for the April 8, 2024 total solar eclipse, using a magnetohydrodynamic (MHD) model of the corona.  The model incorporates thermodynamic transport terms and employs a wave-turbulence-driven (WTD) description of coronal heating and solar wind acceleration.  Our previous coronal predictions employed relaxed MHD solutions corresponding to a boundary condition based on a single photospheric magnetic map, incorporating data that at best was measured 10 to 14 days prior to the eclipse. This year, we introduce a new paradigm:  A continuously updated prediction based on a time-evolving model.  To accomplish this near-real time description, we have incorporated 3 new elements:  (1) a time-evolving MHD model driven by evolution of the photospheric magnetic field,  (2) an automated method for energizing the non-potential corona near polarity inversion lines that evolve in time, and (3) The Open-source Flux Transport (OFT) model, that assimilates near-real time surface magnetic flux observations from SDO HMI as well as low-latency observations from the Solar Orbiter PHI instrument made away from the Sun–-Earth line. This presentation will give an overview of the entire prediction effort and describe the time-dependent coronal dynamical features that appear in the solutions. Research Supported by NASA and NSF.  Computational resources provided by the NSF ACCESS program and the NASA Advanced Supercomputing division at Ames.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要