谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Satellite-based water surface slope in small mountain river

Haoyang Lyu,Fuqiang Tian

crossref(2024)

引用 0|浏览5
暂无评分
摘要
Satellite altimetry has emerged as a key alternative for inland water level measurement in addition to ground observations. Water surface slope (WSS) is one of the basic parameters of river morphology for discharge calculation. Estimation of WSS can also avoid systematic bias in satellite water levels relative to gauged data. A range of satellite data products are available to provide accurate river water level measurements and estimates of river WSS on a worldwide scale. Nonetheless, satellite-based observation of river water surface remains challenging in small rivers, such as the mountainous river reaches with narrow water surfaces. In this study, we examined the accuracy of the ICESat-2 ATL03 photon height data in estimating WSS over the mountainous river reach of Yongding River flowing across Hebei Province and Beijing City in northern China. With minimum along-track sampling interval of 0.7m, the ICESat-2 ATL03 data provided reliable estimation of WSS over narrow river reaches which are 50 to 100m wide. Satellite virtual stations were located mainly with a histogram-based statistical method, seeking for photon height that corresponds to the peak frequency. The twelve groups of satellite virtual stations chosen for river WSS estimation finally show an overall correlation coefficient of 0.96 in validation. Relative error of WSS estimation ranges from 0.13% to 14.51%. Findings of this study provide further implications for satellite-based river water surface measurement in small mountain river basins that lack of ground observation conditions, bringing in reliable estimation of key hydrological parameters based on satellite observation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要