Insights from the European Drought Risk Atlas

crossref(2024)

引用 0|浏览8
暂无评分
摘要
In the past decades, and notably the last few years, droughts have severely impacted various interconnected socio-economic sectors and ecosystems across the EU. These impacts encompass, among others, extensive losses in both rain-fed and irrigated agriculture, challenges and constraints in public water supply, disruptions in inland shipping, diminished production of hydropower and thermoelectric energy, impaired functioning of terrestrial and freshwater ecosystems, and implications for the tourism industry. In order to better prepare for future drought events in Europe, knowledge on the drivers, spatial patterns and dynamics of drought risks is urgently needed.  The European Drought Risk Atlas responds to that need by mapping hotspots and risk drivers across diverse systems and regions within the EU. Combining conceptual risk models (impact chains) and a data-driven quantitative drought risk assessment based on machine learning, this Atlas represents a significant stride toward impact-driven drought risk analysis in present and projected global warming levels (+1.5°C, +2.0°C, +3.0°C). It provides a detailed and disaggregated perspective on the risks posed by droughts to societies and ecosystems, with a particular focus on agriculture, public water supply, energy, river transportation, freshwater, and terrestrial ecosystems. The data-driven analysis reveals that current levels of drought risk in the EU are already notable, with average annual losses presenting economic and environmental threats in nearly all regions. As expected, the Mediterranean region, particularly the Iberian Peninsula, faces high drought risk under both current and projected climate conditions, driven by the escalating dry conditions associated with global warming. However, while drought risk of certain sectors in Europe follows a north-south gradient of overall mean drying (south) and wetting (north) under climate change, the analysis underscores that each sector reacts distinctly to current and projected hazard conditions, exhibiting sector-specific sensitivity. Eastern and Western Europe may experience complex dynamics due to the interplay between drying and wetting patterns and precipitation variability, resulting in different risk conditions depending on the considered sector. While the analysis may still be refined as new data (observations and future climate simulations) become available, this Atlas represents a unique tool of unparalleled value that can shape future EU preparedness and adaptation policies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要