Fast seafloor topography mapping of large oceanic provinces by optimization/parallelization

Lucia Seoane, David Fuseau,Guillaume Ramillien,José Darrozes, Bastien Plazolles,Didier Rouxel, Corinne Salaün,Thierry Schmitt

crossref(2024)

引用 0|浏览2
暂无评分
摘要
During the last decades, several inversion approaches have been proposed to derive sea floor topography from satellite-based gravity data. Unfortunately, the most accurate non linear ones are based on iterative schemes that remain very time-consuming, especially if the number of topographic heights to be fitted is very important, e.g. when the oceanic domain is large and/or the gravity data is geographically dense and thus the maximum grid resolution to be accessible is high. Our strategy of computation is to decompose the total area into geographical cells that are overlapped to cancel the edge effects. The reference ocean depth given by GEBCO and the elastic thickness for regional compensation in function of the square root of the age of the oceanic crust are assumed to be constant in each cell. The initial inversion code has been translated into C++ and optimized using Armadillo software and LAPACK library to obtain a gain of speed of 1000 for a large region such as the complete North Atlantic Ocean (-54,-26,18,37). Post-fit and absolute errors are typically less than 200 m and 50 m r.m.s. respectively. These new detailed maps of bathymetry represent a precious source of information for geophysical applications. 
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要