Laboratory Insight into the Evolution of the Seismic Potential of an Asperity due to Wear

Sofia Michail,Paul Antony Selvadurai, Markus Rast, Antonio Felipe Salazar Vásquez,Patrick Bianchi,Claudio Madonna,Stefan Wiemer

crossref(2024)

引用 0|浏览3
暂无评分
摘要
Faults in nature exhibit complex surface characteristics with patches of the fault (asperities) that may slip dynamically while other sections are more prone to creep (Beeler et al., 2011). Asperities forming in nature may be due to the geometric interactions between surfaces within a fault that contribute to complex stress states that are not well understood. Fault roughness is believed to play an important role in the control of the contact conditions established by asperities, directly affecting its potential to slip unstably. How the asperities are formed and how their seismogenic properties evolve due to wear is an important question with implications to slip budget and earthquake potential. In this study, we performed a triaxial experiment at sequentially increasing confining pressures (Pc = 60, 80, 100 MPa) on a saw-cut sample of Carrara marble. We analysed the quasi-static frictional response that benefited from novel arrays of distributed strain sensors (DSS) obtained using fiber optics. This sensor offered unique insight into the axial strain with a spatial resolution of 2 mm. The frictional behaviour during the first confining pressure step exhibited a dynamic instability in the form of a stick-slip event (SS) that produced a measurable stress drop. In the subsequent confining pressure stages, where an increase in confining pressure translated to increased normal stress, the fault behaved in a stable manner and no dynamic instabilities were produced. This observation is inconsistent with frictional stability theory (e.g. Rubin and Ampuero, 2005) and required pre- and post-mortem campaigns into the surface characteristics and their evolution to explain this abnormal behaviour. Therefore, we employed experimental techniques (pressure sensitive film (PSF), optical and stylus profilometry) along with finite element (FE) model in ABAQUS to characterize the pressure and roughness. The DSS array showed extensional axial strain closer to the edges of the fault, while only compression was expected in this triaxial loading test. The pre-experimental profilometry revealed an asperity located at the centre of the fault with a curvature ratio of h/L=0.1% inherited from the hand-lapping preparation, which dominated the initial contact conditions prior to the SS and explained the DSS observations. The DSS results were confirmed using a FE model which justified the effect of the fault geometry (h/L) on the strain response. After the SS, wear and smoothening of the central asperity was seen in roughness measurements. The profilometric measurements showed that gouge was deposed adjacent to the high normal stress asperity center (PSF) and were characterized by increased RMS roughness. These small amounts of gouge on the fault surface were sufficient to suppress the seismic response of the asperity. These findings show that the seismic potential of a carbonate (softer) asperity, may be highly influenced by the debris produced during wear. Its impact on earthquake nucleation could provide insight into large-scale earthquake preparation processes on carbonate faults in nature.   References: Beeler, M., Lockner, D. L. and Hickman, S. H. (2001), Bull. Seis. Soc. Am., 91 (6): 1797–1804 Ampuero, J.-P. and Rubin, A. M. (2008), J. Geophys. Res., 113, B01302
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要