Coupled atmosphere-sea-ice-ocean feedback accelerates rapid sea ice decline in Weddell Sea in high-resolution global climate model

Dae-Won Kim,Thomas Jung, Navajyoth Puthiyaveettil,Wonsun Park,Tido Semmler,Axel Timmermann, Martina Zapponini

crossref(2024)

引用 0|浏览1
暂无评分
摘要
Sea ice extent around the Antarctic exhibits a high level of variability on interannual and longer timescales, characterized by a positive trend since the satellite era and interruptions due to e.g., the emergence of the Maud Rise Polynya in 2016. Given the relatively short period of observational data and the high level of natural variability, it has remained challenging to unequivocally identify the anthropogenic fingerprint in Antarctic sea ice. Moreover, to properly study the Antarctic sea ice and its response to future warming, it is necessary to capture important dynamics, such as polynyas, the Antarctic slope current, and coastal leads. Many models within the CMIP6 model portfolio do not even have the spatial resolution to adequately resolve these features. This implies that their Antarctic projections may not be as trustworthy and robust as those for the Arctic Ocean. In this study we employ the high-resolution OpenIFS-FESOM (AWI-CM3) coupled general circulation (nominally 30 km atmosphere and 4-25 km ocean resolutions) to investigate the Antarctic sea ice response to greenhouse warming, following a SSP5-8.5 greenhouse gas emission scenario. Our simulation exhibits a sudden decline of Antarctic sea ice in the Weddell Sea (WS) which can be explained by a combination of physical processes that involve continued strengthening of westerlies, increased atmosphere-ocean momentum transfer due to sea ice decline, a spin-up of the Weddell-Sea Gyre and slope current and corresponding vertical and horizontal supply of heat into the Weddell Sea. The resulting decrease of sea ice further leads to heat accumulation in austral summer due to the absorption of short-wave radiation, which can further weaken winter sea ice extent and intensify the momentum transfer and associated heat transport into the Weddell Sea gyre.   Our study highlights the relevance of positive atmosphere-sea ice-ocean feedbacks in triggering the abrupt decline in Antarctic sea ice.  
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要