Sensing of dietary amino acids and regulation of calcium dynamics in adipose tissues through Adipokinetic hormone in Drosophila

biorxiv(2024)

Cited 0|Views2
No score
Abstract
Nutrient sensing and the subsequent metabolic responses are fundamental functions of animals, closely linked to diseases such as type 2 diabetes and various obesity-related diseases. Drosophila melanogaster has emerged as an excellent model for investigating metabolism and its associated disorders. In this study, we used live-cell imaging to demonstrate that the fly functional homolog of mammalian glucagon, Adipokinetic hormone (AKH), secreted from AKH hormone-producing cells (APCs) in the corpora cardiaca, stimulates intracellular Ca2+ waves in the larval fat body/adipose tissue to promote lipid metabolism. Further, we show that specific dietary amino acids activate the APCs, leading to increased intracellular Ca2+ and subsequent AKH secretion. Finally, a comparison of Ca2+ dynamics in larval and adult fat bodies revealed different mechanisms of regulation, highlighting the interplay of pulses of AKH secretion, extracellular diffusion of the hormone, and intercellular communication through gap junctions. Our study underscores the suitability of Drosophila as a powerful model for exploring real-time nutrient sensing and inter-organ communication dynamics. ### Competing Interest Statement The authors have declared no competing interest.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined